Department of Atmospheric Sciences | University of Illinois
Atmospheric Sciences | Colloquia

Atmospheric sciences colloquia

Atmospheric sciences colloquia

skip to events

Seminar coordinator: Asst. Prof. Ryan Sriver (rsriver at illinois.edu)

calendar tabs

  •  All 
  • Grid
  • Month
  • Week
  • Day
  • (Selected tab) Detail

Event Detail Information

Event Detail Information

Global Variability of Intense Convection

Speaker Professor Robert Houze, Department of Atmospheric Sciences, University of Washington
Date Oct 16, 2013
Time 3:00 pm  
Location Room 114 of the Transportation Building
Sponsor Department of Atmospheric Sciences, University of Illinois
Contact Shirley Palmisano
Phone 217-244-5737
Event type Graduate colloquium
Views 867

The A-Train and TRMM satellites have made it possible to analyze deep convection over the globe in detail. This talk will examine the behavior of the most intense convective systems around the globe as seen by these satellites. From the A-Train satellites, we have developed an objective method for identifying and characterizing mesoscale convective systems (MCSs) by combining infrared, passive microwave, and cloud radar data. Less wide and more isolated systems maximize over tropical landmasses. Larger, sometimes interconnected, mesoscale systems with wider and deeper anvil clouds occur prominently over warm tropical oceans. TRMM radar data provide more details of how deep MCSs vary over the tropics and subtropics. We have developed a methodology for using the TRMM radar data to identify different types of intense echoes, namely, those with deep convective towers, those with wide intense convective regions, and those with broad stratiform echo regions. Using these echo-type categories, we show how the population of intense convection varies relative to topography such as the Andes and Himalayas. They further allow us to determine how large-scale circulation features such as the Madden-Julian Oscillation, the Asian monsoon, and the African easterly jet control the convective population characteristics. We use precipitation estimates from the TRMM radar to determine the relative importance of each category of convective storm to climatological rainfall in key areas of the tropics and subtropics.

If you would like to subscribe to an RSS feed of DAS seminars, use: DAS Seminar RSS feed.

link for robots only